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Shock-wave attenuation in metals is studied in a number of papers [1-8] in order to obtain information
about the strength of substances behind a shock front. A number of experiments on the high-velocity deforma~
tion of metals are not successfully described within the framework of an elastic —plastic model with constant
yield point, and dislocation models [9~13] are relied upon for the interpretation of experimental data.

The strength properties of an aluminum alloy D16 under shock compression pressures from 8 to 20 kbar
are investigated experimentally and numerically in this paper. The possibility of describing experimental re-
sults on the damping of an elastic forerunner and a plastic wave on the basis of the model of an elastic—plastic
body and a model based on the representations of dislocation dynamics is investigated.

1. Formulation of the Tests and Methodology

of the Experiment

Plane shocks were produced in targets of I =1-40 mm thickness by collisions with a A =0,9~-mm-~thick
impactor at a velocity of w=275 m/sec. The spread in the quantity w from test to test was 10% on the average.
The impactor and target were fabricated from a D16 alloy as delivered. The collisions were executed in a
ballistic shock tube analogous to that described in [14]. The parameters of the one-dimensional shock in the
target were studied by the method of capacitive {15, 16], quartz [17], and Manganin [18, 19] transducers., The
diversification of the collisions in the 7T0~mm-diameter domain-did not exceed 0,13 pusec, and ~0.02 psec in
the domain of transducer mounting. ’

Quartz disks of 10 and 20 mm diameter and 2 and 4 mm thickness were used to record the pressure pro-
file, The quartz transducer was hooked up in a short-circuit loop with the R =91-Q load resistance. The recor-
ding time was 0.35 and 0.7 usec, and corresponded to the transit time T of an elastic shock over the quartz
thickness, The piezomodulus of the X-cut quartz was taken to be 2.04°107% C/kbar-em? for Ppy = 6 kbar and
2.15:107% C/kbar‘cm’® in the 9-16-kbar range [20], Records from the quartz transducer carry information
about the pressure distribution in the wave ~0.03 psec with a time resolution, which permits clarification of
the elastic —plastic wave structure,

Fig, 1
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The Manganin pressure transducer was a plane rectangular grating wound from 0.05-mm-diameter
Manganin wire (mark MNMtsZ-12 All-UnionState Standard (GOST) 492-52) on 2 10x 10 mm area. The trans~
ducer thickness was 0.15 mm, which corresponds to a time resolution of 0.25 usec, The piezoresistive coef-
ficient of Manganin was taken to be 2.3:1073 kbar™! for py =15 kbar, and 2,7-10 "% for py > 15 kbar [19].

Recording of the instantaneous velocity of the specimen free-surfacé motion was by a capacitor trans-
ducer of 0.78-cm?area hooked up in a short-circuit loop (R = 98 Q),

Oscilloscopes with a passband ~20 MHz were used to record the electrical signals from the transducers.

2. Test Results and Discussion

Oscillograms illustrating the pressure change in the shock (Fig. 1a, quartz pressure transducer, { =10 mm,
timing markers 0.1 usee, T = 0,7 usec) and the specimen free~surface motion velocity (Fig. 1b, ¢, capacitor
transducers, {=5 and 30 mm, respectively, timing markers 1.0 psec) are presented in Fig. 1.

The experimental compression wave profiles recorded by a quartz pressure transducer (averaged from
the results of three to four tests) are presented in Fig, 2 (solid lines), The profiles recorded have a two-wave
configuration, The first wave is elastic and propagated at the speed cg=6.2% 0,1 km/sec, and the second,
plastic, wave has the vélocity Cy =5.3% 0.2 km/sec in the domain under investigation.

The experimental results illustrating the change in pressure pg) (points 1) and mass flow rate ug|
(points 2) on the elastic wavefront are presented in Fig. 3 as a function of target thickness. A substantial
diminution in the pressure amplitude is detected in the elastic wave from 12 to 2 kbar as the specimen thick-
ness increased from 3 to 10 mm. Attenuation of the elastic precursor was observed earlier in aluminum [21],
Armeco iron [22], and silicon [23]. Let us note the well-defined spread in the experimental points thatis possi-
bly associated with the high sensitivity of the precursor amplitude to the material microstructure,

The plastic wavefront being recorded (Fig. 2) is noticeably smoothed out. For I =10 mm the time of
wavefront rise is ~ 0,2 usec, which agrees with the results in [5] obtained by a laser interferometer method -
for aluminum under shock compression to 21 kbar,
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Fig. 5

The two-wave structure of the unloading wave is fixed on the p(t) profiles for I =10 mm. According to
the model of an ideal elastic—plastic medium, the amplitude of the elastic section of the unloading wave Ap
should be twice the amplitude of the elastic precursor. In experiments, the quantity was Ap=~1.3pe}. It can
be assumed that one of the possible reasons for such a discrepancy could be the Bauschinger effect for shock
compression and the subsequent plastic unloading [5]. This effect can be explained from the aspect of dis~
location theory; in fact the finite velocity of the motion and multiplication of dislocations and its associated
delay in fluidity result in the dynamic yield point in a plastic compression wave being several times greater
than its static value, At the same time, an increase in the number of dislocations in the compression wave
results in the reverse passage from elasticity to plasticity proceeding at a significantly lower tangential stress
during expansion of the shock compressed material.

Data on the damping of the plastic wave amplitude as it moves over the target are presented in Fig, 4
curve a gives results of measurements by the Manganin transducer, and curve b by the quartz transducer).
Pressure pulse propagation cannot be described from the viewpoint of a hydrodynamic approximation (curve 1,
computed by the method in [4]). Shock attenuation turns out to be stronger thanfollows from the hydrodynamic
model. Curves 2-4 correspond to plastic wave damping by the model of an elastic—plastic mediom [1] with
elastic unloading wave amplitudes of 3, 4, and 5 kbar, respectively, Comparing curves 2-4 with the results of
the experiment shows that the damping of the plastic shock in the 8-20 kbar range is described by the model
of an elastic—plastic medium with an elastic unloading wave amplitude Ap=3-5 kbar, where the amplitude of
the elastic section of the unloading diminishes as the wave propagates.

Extrapolation of the experimental results to I = 0 (see Fig, 4) yields Py = 23-24 kbar for the initial pres~
sure. The initial shock amplitude, computed by the formula p, =pjcou is ~22 kbar, It is therefore impossible
to exclude that a purely elastic, or an almost elastic, nature of the collision is realized in the initial instant
[23, 24].

3. Model of a Medium, Results of Computations

In the interest of comparison with the experiments described, computations were performed on an
electronic computer for a complicated model of a medium based on the representations of dislocation dynamics.
The problem of the collision of two plates under uniaxial strain-state conditions was examined, The equations
of motion have the form
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where x is the Eulerian coordinate of the particle, u is the velocity, p is the density, p is the hydrodynamic
pressure, and s is the intensity of the stress tensor deviator, Let us note that p, =p — ¥,s.
The system (3.1) is closed by equations governing the properties of the medium,

The equation of state was taken in the form

=25 -1

n po

with the following values of the parameters: p ,=2.7 g/ em?®, ¢g=5.3 km/sec, and n=2,5, The governing relation-
ships for the stress deviator were taken in the form '

ds de 9P
_ét—=2G (7{ —25;sgns); (3.3)

Y4
% = buyN exp [— 27,/ s]l; o
(3.5)

dN ae? ;
T=mG NO) =N,

where G is the shear modulus, 9&/8t = du/0x is the total strain rate, 20eP/ 9t is the plastic strain rate, N
is the density of mobile dislocations, N; is the initial density of the mobile dislocations, m is the multiplication
factor, b is the Burgersvector, 7, is the characteristic shear resistance, and ux =(G/p)¥ %is the shear speed
of sound.

The plastic strain rate is determined by the internal dislocation parameters just until it becomes equal
to the total strain rate according to (3.4). Afterwards it is natural to assume that the plastic strain rate equals
the total shear strain rate (or is less if hardening is introduced), It is assumed that 20¢P/3t=29 e/at if

delot < Qu, N exp [—27,/Is|]. {3.6)
Then ds/dt =0 and s =const,

For | s| < Yg it is assumed 8& P/8t=0. The behavior of the medium is purely elastic here, being sub-
ject to Hooke's law in differential form

dsl/dt = 2Goelat. (3.7)
The unloading was also considered elastic. The shear modulus was calculated by the formula
PR XAVl 3.8)
2(1 -+ )

The method of pseudoviscosity was used to compute the shocks. The countable blurring of the shocks
can result in additional multiplication of the dislocations on the front of the elastic precursor, In this connec-
tion, multiplication of the dislocations, defined by (3.5), was allowed in the computation scheme only behind
the elastic wavefront, and the front localization was made by means of the position of the first maximum of
the countable viscosity. ’

The following were taken as dislocation parameters: b=2.86-10"% ¢m, Ny =2-108/cm? [21], ux =2.8 km/
sec, m=40-10/cm?®. It was assumed that Y =0.5 kbar, the coefficient 7, was selected numerically from a
comparison between the computational and experimental data. The best agreement was reached for 7, =1
kbar,

The behavior of a material subject to the equations of the medium (3.2)-(3.8) during shock compressgion
and subsequent expansion is shown schematically in Fig. 5 in the coordinates py, the compressive stress in the
strain direction, and the compression e, Here OA is the elastic-strain section, AF is the "yield lag" section,
FB is the plastic loading section, BC is the elastic unloading curve, CD is the plastic unloading curve, and OE
is the hydrostatic compression curve.

This model differs from the ideal elastic— plastic medium [4, 26] in the presence of the yield lag section
when the density of the mobile dislocations is not enough to transfer the material into the flowing state. The
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dynamic yield point at which the material arrives is determined by the magnitude of this section which can be
varied for different processes. The diagram is nonsymmetric relative to the hydrostatic compression curve.
This asymmetry diminishes as the wave advances and attenuates.

The system (3.1)-(3.8) was solved numerically by finite differences. The computation method based on
splitting according to physical processes is elucidated in [27]. The size of the calculation cell is 0.05-0,1 mm;

The computed profiles of p,(t) are denoted by dashes in Fig. 2. Let us note the good correspondence be-
tween the computed and experimental curves for ! =10 mm, The amplitude of the elastic unloading wave
measured in test was 3.5 kbar for this specimen thickness, which corresponds to the estimate obtained for the
quantity Ap obtained from an analysis of shock attenuation according to [1].

The computed curve obtained for attenuation of the elastic wave amplitude is presented in Fig. 3. The
location of the precursor was determined in the numerical computation for a comparison with the experimental
data by means of the local minimum of the slope p,(x). Qualitative agreement between the experimental and
computed data on elastic precursor attenuation can be asserted, whilethe quantitative correspondence can be
acknowledged as satisfactory.

The computed curve for attenuation of the plastic wave amplitude is presented in Fig. 4 curve 5).
Plastic wave attenuation is transmitted well enough in the computation,

It can therefore be concluded that the plastic deformation model considered mainly reflects the singu-
larity in the behavior of aluminum under shock compression to 20 kbar and subsequent unloading.
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SIMILARITY AND THE ENERGY DISTRIBUTION
IN AN EXPLOSION IN AN ELASTIC— PLASTIC MEDIUM

P. F. Korotkov and B. M. Prosvirnina UDC 539.3

An exact solution of the problem of an explosion in a solid medium where large strains occur is possible
by using numerical methods [1, 2]. Results of computations of separate versions of strong explosions are
presented in [3-9]. The spherically symmetric explosion is investigated in a medium which differs minimally
in complexity of the description from an elastic medium but an important property of a medium subjected to
large strains, the capacity to plastic flow, is taken into account for a detailed analysis and to obtain general
regularities in this paper. Such an ideal elastic— plastic medium differs from the elastic by one excess para-
meter, the yield point. The problem of an explosion in such a medium was approximately solved earlier for
simplifying assumptions, and a detailed survey is found in [10-14].

The equations of motion continuity and energy in Lagrange variables for the nonstationary motion of a
continuous medium with spherical symmetry have the form

%.i‘;:=-;12—-3—(r2v), V"'T’
02 = —p 5 + (S, 57+ 2805
%_%,%___%, =—p+8,,06,=—p+ Sy,

where v is the velocity, pisthe density of the medium, p, is the initial density, p is the pressure, o and 0y
are the radial and tangential stresses, Sy and S, are stress deviator components, E is the internal energy of
the medium per unit mass, and e, and e, are strain tensor components.

The relationships between the stresses and strains for an elastic material are used in the form
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